miércoles, 10 de junio de 2015

1-CUANTOS

Puede entenderse al quantum como la cantidad mínima de energía que es susceptible de transmisión a través de una longitud de onda. También la noción refiere al valor más pequeño que puede adquirir una magnitud en el marco de un sistema físico al modificar su estado.
Los quantum, de acuerdo a la física cuántica, son las unidades de energía emitidas mediante la radiación electromagnética. Esta rama de la física sostiene que las partículas se dedican a intercambiar energía en enteros que albergan la mínima cantidad posible, que son los quantum.

La física cuántica se encarga de analizar cómo se comporta la materia con dimensiones ínfimas, algo que dificulta conocer cuál es la posición exacta y la energía de una partícula.
Al trabajar con quantums y en base al postulado del intercambio de energía de forma discreta, la física cuántica permitió brindar explicaciones a hechos inaccesibles para la física convencional
Un quantum o cuanto es la menor cantidad de energía que puede transmitirse en cualquier longitud de ondaConsiderado el creador de la teoría cuántica, el físico alemán Max Planck enunció que la radiación electromagnética se emite en unidades discretas de energía denominadas quantum o quantos.Para la física clásica, un oscilador de cierta frecuencia podía emitir cualquier parte de su cantidad total de energía sin importar su valor. En realidad, los cuantos o unidades de radiación son tan pequeños que la radiación nos parece continua.Einstein, en 1905, explicó el efecto fotoeléctrico utilizando la teoría de los cuantos, admitiendo que la luz se traslada por el espacio en forma de cuantos. A este cuanto de radiación se le dio posteriormente el nombre de fotón.

                La Relatividad General

Para continuar el homenaje a Albert Einstein, vamos a repasar ahora brevemente la Relatividad General en un texto que sirve como introducción para aquellos no iniciados en esta rama de la física.
1.- PASADO, PRESENTE Y FUTUROLa teoría general de la relatividad de Albert Einstein es uno de los logros más imponentes de la física del siglo veinte. Publicada en 1916, explica lo que percibimos como fuerza de gravedad. De hecho, esta fuerza surge de la curvatura del espacio y del tiemOEinstein propuso que los objetos como el Sol y la Tierra variaban la geometría del espacio. En presencia de materia y energía, el espacio se puede deformar y estirar,formando cordilleras, montañas y valles que causan que los cuerpos se muevan por estas "rutas" curvas. Así que aunque la Tierra parezca moverse alrededor del Sol a causa de la gravedad,en realidad, tal fuerza no existe. Es simplemente la geometría del espacio-tiempo alrededor del Sol la que dice cómo debe moverse la Tierra.
La teoría de la relatividad general tiene consecuencias de largo alcance. No sólo explica el movimiento de los planetas, sino que también puede describir la historia y la expansión del Universo, la física de los agujeros negros, la curvatura de la luz de las estrellas y las galaxias distantes.

PREDECIBILIDAD

El término predicción puede referirse tanto a la «acción y al efecto de predecir» como a «las palabras que manifiestan aquello que se predice»; en este sentido, predecir algo es «anunciar por revelación, ciencia o conjetura algo que ha de suceder»
La predicción constituye una de las esencias claves de la ciencia, de una teoría científica o de un modelo científico. Así, el éxito se mide por el éxito o acierto que tengan sus predicciones.
La predicción en el contexto científico es una declaración precisa de lo que ocurrirá en determinadas condiciones especificadas. Se puede expresar a través del silogismo: "Si A es cierto, entonces B también será cierto."
El método científico concluye con la prueba de afirmaciones que son consecuencias lógicas del corpus de las teorías científicas. Generalmente esto se hace a través de experimentos que deben poder repetirse o mediante estudios observacionales rigurosos.
Una teoría científica cuyas aseveraciones no son corroboradas por las observaciones, por las pruebas o por experimentos probablemente será rechazada. El falsacionismo de Karl Popper considera que todas las teorías deben ser puestas en cuestión para comprobar su rigor.
Las teorías que generan muchas predicciones que resultan de gran valor (tanto por su interés científico como por sus aplicaciones) se confirman o se falsean fácilmente y, en muchos campos científicos, las más deseables son aquéllas que, con número bajo de principios básicos, predicen un gran número de sucesos.
LA TEORÍA DEL CAOS:DEFINICIÓN Y EJEMPLO

Popularmente, se le llama Teoría del Caos a la rama de las ciencias exactas, principalmente física y matemáticas, que trata sobre comportamientos impredecibles en sistemas dinámicos (sistemas complejos que cambian o evolucionan con el estado del tiempo). 

La Teoría del Caos plantea que el mundo no sigue un patrón fijo y previsible, sino que se comporta de manera caótica y que sus procesos y comportamiento dependen, en gran manera, de circunstancias inciertas. Esto plantea que una pequeña variación en el sistema o en un punto del mismo puede provocar que en un lapso de tiempo a futuro éste presente un comportamiento completamente diferente e impredecible. No es propiamente una teoría, sino un gran campo de investigación abierto que abarca numerosas líneas de pensamiento.

De acuerdo a su definición, los sistemas dinámicos se clasifican básicamente en 3 tipos:
1.           Estables
2.           Inestables
3.           Caóticos

El Núcleo

El núcleo atómico es la parte central del átomo donde se concentra el 99.99% de la masa total del átomo y tiene carga positiva. está formado por protones y neutrones llamados nucleones y se mantienen unidos por las fuerzas nucleares.
·                     isotopos: son núcleos con el mismo numero atómico(Z) pero diferente numero másico(A)
·                     isobaras: son núcleos con el mismo número másico(A) pero distinto numero atómico (Z)
·                     isótonos: son núcleos con el mismo número de neutrones (N)
·         El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99,9% de la masa total del átomo.
·         Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo (número atómico), determina el elemento químicoal que pertenece. Los núcleos atómicos no necesariamente tienen el mismo número de neutrones, ya que átomos de un mismo elemento pueden tener masas diferentes, es decir son isótopos del elemento.
·         La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicosde helio emitidos porrocasradiactivas.Lamayoríadeesaspartículastrasplámina,pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.

·      Definición de radioactividad

·      Definimos radioactividad como la emisión espontánea de partículas (alfa, beta, neutrón) o radiaciones (gama, captura K), o de ambas a la vez, procedentes de la desintegración de determinados nucleidos que las forman, por causa de un arreglo en su estructura interna.
·      La radioactividad puede ser natural o artificial. En la radioactividad natural, la sustancia ya la posee en el estado natural. En la radioactividad artificial, la radioactividad le ha sido inducida por irradiación.
·      Un radionucleido es el conjunto de los núcleos radioactivos de una misma especie. Todos los núcleos radioactivos que forman un radionucleido tienen una radiactividad bien definida, común a todos ellos, que los identifica; de la misma forma que un tipo de reacción química identifica los elementos que participan.
·      
·      Cuantitativamente, la radioactividad es un fenómeno estadístico. Por este motivo, para valorarlo hay que observar el comportamiento de un conjunto de núcleos de la misma especie. Por la ley de los grandes números, se define una constante radiactiva λ como la probabilidad de desintegración de un núcleo por unidad de tiempo. Con esta definición, el número N de núcleos radioactivos de una misma especie que se encuentran en una sustancia en un instante t es dado por N = No · e-λt, donde No es el número de núcleos radioactivos que había antes de que transcurriera el tiempo t. En realidad, difícilmente una sustancia radioactiva es formada por un solo radionucleido, aunque cada uno de sus componentes en desintegrarse se transforma en un núcleo diferente que, a su vez, puede ser también radioactivo.
·      El radionucleido inicial es llamado padre, y el derivado, hijo. Esta situación puede continuar a lo largo de múltiples filiaciones y el conjunto de todas es llamado familia o serie radioactiva. En este caso, la relación que da el número de núcleos radioactivos presentes es más compleja porque, además de tener en cuenta el número de cada uno de ellos en el instante inicial, hay que considerar que, por desintegración de unos, se forman otros.
·      El problema se simplifica cuando se quiere conseguir el equilibrio radioactivo (dicho también equilibrio secular en las series radiactivas naturales), que es cuando ha pasado un tiempo suficientemente largo desde que se ha iniciado el proceso de filiación, porque entonces el ritmo de las desintegraciones es impuesto por el radionucleido que tiene la constante radioactiva más pequeña.

·                   Concepto de fusión

·         La fusión significa unión de dos elementos o cosas.
En Física, se denomina fusión al cambio de estado de la materia que pasa del estado sólido al estado líquido. A medida que el sólido se va calentando, se produce una oscilación progresiva de sus partículas, por incorporación de energía, hasta que los átomos se desordenan (los sólidos poseen sus partículas ordenadas).
El punto de fusión ocurre en el momento en que coexisten en la materia los estados sólido y líquido, y a partir del cual ya habrá solamente líquido. Cada sustancia tiene su propio y constante punto de fusión, por ejemplo el agua congelada (hielo) comienza a derretirse (fusionarse) a partir de 0º C.
El calor que se necesita para provocar el pasaje del estado sólido al líquido, se denomina calor molar de fusión. Si la temperatura se sigue elevando, es posible que se llegue al punto de ebullición y el líquido se transforme en gas.
La fusión nuclear es el fenómeno que se produce intencionalmente con gran aporte de energía de activación, para lograr la unión de dos núcleos atómicos ligeros de carga semejante, en uno más pesado. En este proceso se libera o absorbe energía. Se aplica en las bombas de hidrógeno, que por fusión atómica de deuterio y tritio forman helio, liberando enorme cantidad de energía. Las estrellas son un ejemplo de fusión nuclear natural



Fisión nuclear

Una reacción en cadena ocurre como sigue: un acontecimiento de fisión empieza lanzando 2 ó 3 neutrones en promedio como subproductos. Estos neutrones se escapan en direcciones al azar y golpean otros núcleos, incitando a estos núcleos a experimentar fisión. Puesto que cada acontecimiento de fisión lanza 2 o más neutrones, y estos neutrones inducen otras fisiones, el proceso se acelera rápidamente y causa la reacción en cadena. El número de neutrones que escapan de una cantidad de uranio depende de su área superficial. Solamente los materiales fisibles son capaces de sostener una reacción en cadena sin una fuente de neutrones externa. Para que la reacción en cadena de fisión se lleve a cabo es necesario adecuar la velocidad de los neutrones libres, ya que si impactan con gran velocidad sobre el núcleo del elemento fisible, puede que simplemente lo atraviese o lo impacte, y que este no lo absorb helio) y beta (electrones y positrones de alta energía

·          )                                   

domingo, 26 de abril de 2015

LUZ REFLEXION Y ESPEJOS


La reflexión es el cambio de dirección de una onda, que al estar en contacto con la superficie de separación entre dos medios cambiantes, regresa al punto donde se originó. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua.

Reflexión de la luz

La luz es una manifestación de energía. Gracias a ella las imágenes pueden ser reflejadas en un espejo, en la superficie del agua o un piso muy brillante. Esto se debe a un fenómeno llamado reflexión de la luz. La reflexión ocurre cuando los rayos de luz que inciden en una superficie chocan en ella, se desvían y regresan al medio que salieron formando un ángulo igual al de la luz incidente, muy distinta a la refracción.
Es el cambio de dirección, en el mismo medio, que experimenta un rayo luminoso al incidir oblicuamente sobre una superficie. Para este caso las leyes de la reflexión son las siguientes:
1a. ley: El rayo incidente, el rayo reflejado y la normal, se encuentran en un mismo plano.

2a. ley: El ángulo de incidencia es igual al ángulo de reflexión.
θi = θr

Reflexión especular[editar]


Reflejo sobre una burbuja de jabón.

Reflejo en un espejo.

La reflexión especular se produce cuando un rayo de luz incide sobre una superficie pulida (espejo) cambia su dirección sin cambiar el medio por donde se propaga; decimos que el rayo de luz se refleja.

Reflexión Difusa[editar]

Cuando un rayo de luz incide sobre una superficie "no pulida", los rayos no se reflejan en ninguna dirección, es decir se difunden. Esto se puede producir por ejemplo en la madera.

Reflexión interna total[editar]


Reflexión interna total de la luz.
Cuando en la refracción el ángulo de incidencia es mayor que el ángulo crítico ocurre lo que se conoce como reflexión interna total. Cálculo del ángulo crítico:
{\sin \alpha_{\mathrm{c}} = n_{2,1}}\,\!
en fórmula:
\alpha_{\mathrm{c}}\,\!: ángulo crítico;
n_{2,1}\,\!: índice de refracción.

Retrorreflexión[editar]


Principio de funcionamiento de un reflector de esquina.
La retrorreflexión es la capacidad que tienen algunas superficies que por su estructura pueden reflejar la luz de vuelta hacia la fuente, sin que importe el ángulo de incidencia original. Este comportamiento se puede observar en un espejo, pero únicamente cuando éste se encuentra perpendicular a la fuente; es decir, cuando el ángulo de incidencia es igual a 90°. Se puede construir un retrorreflector simple colocando tres espejos ordinarios de forma que todos sean perpendiculares entre sí (un reflector esquinero). La imagen que se produce es igual a la imagen producida por un espejo pero invertida. Tal como se observa en la figura, la combinación de las diferentes superficies hace que el haz de luz sea reflejado de vuelta a la fuente.
Si a una superficie se le aplica una pequeña capa de esferas reflectivas es posible obtener una superficie con una capacidad limitada deretrorreflexión. El mismo efecto se puede obtener si se dota a la superficies con una estructura similar a pequeñas pirámides (reflexión esquinera). En ambos casos, la estructura interna de la superficie refleja la luz que incide sobre ella y la envía directamente hacia la fuente. Este tipo de superficies se utilizan para crear las señales de tránsito y las placas de los automóviles; en este caso particular no se desea una retrorreflexión perfecta, pues se quiere que la luz retorne tanto hacia las luces del vehículo que emite el haz de luz como a los ojos de la persona que lo va conduciendo.

Reflexión acoplada compleja[editar]

La luz se refleja exactamente en la dirección de la fuente de donde proviene debido a un proceso óptico no lineal. En este tipo de reflexión, no solo se invierte la dirección de la luz; también se invierte el frente de la onda. Un reflector acoplado se puede utilizar para eliminar aberraciones en un haz de luz, reflejándola y haciéndola pasar de nuevo por el dispositivo óptico que causa la aberración.

Reflexión de neutrones[editar]

Materiales que reflejan neutrones, como por ejemplo el berilio, son utilizados en reactores nucleares y en armas atómicas. En las ciencias físicas y químicas, la reflexión de neutrones es utilizada para determinar la estructura y composición interna de un material. refl HD.htm

Reflexión del sonido[editar]

Cuando una onda sonora golpea una superficie plana es reflejada de manera coherente asumiendo que el tamaño de la superficie reflectiva es lo suficientemente larga con relación a la longitud de la onda que incide. Tómese en cuenta que las ondas del sonido audible tienen un amplio rango de frecuencias (de 20 Hz hasta 20000 Hz), al igual que la longitud de onda (que pude variar de 20 mm hasta 17 m). Como resultado, se obtiene que la naturaleza en general, así como el comportamiento del fenómeno de reflexión varía de acuerdo con la estructura y la textura de las superficies de reflexión; por ejemplo, una superficie porosa tiende a absorber grandes cantidades de energía, mientras que una superficie áspera (donde áspero es relativo a la longitud de onda) reflejará las ondas en todas direcciones dispersando la energía de la onda, en lugar de reflejar el sonido en forma coherente. Esto nos lleva al campo de la Acústica arquitectónica, porque la naturaleza de estas reflexiones son críticas para la sensación del espacio en un auditorio.

Reflexión sísmica[editar]


Si-o-se Pol
Las ondas sísmicas producidas por terremotos o por otras fuentes tales como explosiones, pueden ser reflejadas por capas dentro de la Tierra. El estudio de las ondas sísmicas reflejadas en las profundidades ha dado a los sismólogos la oportunidad de determinar las capas que conforman la estructura de la Tierra. El estudio de las ondas sísmicas reflejadas de poca profundidad se utiliza ensismología por reflexión, que estudia la corteza de la Tierra en general, y en particular para encontrar posibles yacimientos depetróleo o gas natural.


LUZ REFRACCION

La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Solo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si estos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda señalada.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total. Aunque el fenómeno de la refracción se observa frecuentemente en ondas electromagnéticas como la luz, el concepto es aplicable a cualquier tipo de onda

Índice de refracción[editar]

Es la relación entre la velocidad de propagación de la onda en un medio de referencia (por ejemplo el vacío para las ondas electromagnéticas) y su velocidad en el medio del que se trate.

Ángulo crítico: cualquier rayo que incida con un ángulo θ1 mayor al ángulo crítico θccorrespondiente a ese par de sustancias, se reflejará en la interfaz en lugar de refractarse.






LENTE
En el siglo XIII empezaron a fabricarse pequeños discos de vidrio que podían montarse sobre un marco. Fueron las primeras gafas de libros o gafas de lectura.
La palabra lente suele ser de género ambiguo. Normalmente se usa en femenino para referirse al cristal óptico, en tanto que en masculino y plural suele reservarse para referirse a las gafas en algunos países.

Tipos

Las lentes, según la forma que adopten pueden ser convergentes o divergentes.
Las lentes convergentes (o positivas) son más gruesas por su parte central y más estrechas en los bordes. Se denominan así debido a que unen (convergen), en un punto determinado que se denomina foco de imagen, todo haz de rayos paralelos al eje principal que pase por ellas. Pueden ser:
  • Biconvexas
  • Planoconvexas
  • Cóncavo-convexas
Los lentes divergentes (o negativas) son más gruesas por los bordes y presentan una estrechez muy pronunciada en el centro. Se denominan así porque hacen divergir (separan) todo haz de rayos paralelos al eje principal que pase por ellas, sus prolongaciones convergen en el foco imagen que está a la izquierda, al contrario que las convergentes, cuyo foco imagen se encuentra a la derecha. Pueden ser:
  • Bicóncavas
  • Planocóncavas
  • Convexo-cóncavas










3-CORRIENTE ALTERNA, MALLAS Y NODOS


La corriente alterna.


corriente alterna

Llamamos corriente alterna a la corriente que cambia constantemente de polaridad, es decir, es la corriente que alcanza un valor pico en su polaridad positiva, después desciende a cero y, por último, alcanza otro valor pico en su polaridad negativa o, viceversa, es decir, primero alcanza el valor pico en su polaridad negativa y luego en su polaridad positiva.

La polaridad es importante, porque es cierto que puede tener una señal senoidal, pero una señal senoidal puede ser tanto de corriente alterna como de corriente continua. Así que es importante tener claro que la corriente alterna cambia de polaridad, independientemente de la forma o apariencia que tenga su señal en un osciloscopio.




Una manera simple de generar corriente alterna, es con el uso de un alternador elemental como el de la figura:


                                   alternador corriente alterna
En el dibujo se puede observar, como la espira corta las líneas de fuerza del campo magnético y genera una tensión que es recogida por los dos colectores (Aros/bolas verdes) para que después las escobillas puedan transmitir esa tensión. El dibujo, aunque simple, demuestra de que manera funcionan los alternadores más sencillos.
Ahora bien, en la actualidad y con el fin de eliminar los dos colectores, se construyen los alternadores de diferente manera. La parte móvil no es la bobina, la parte móvil es el rotor o también llamado la parte polar del alternador.

                                      corriente alterna

Efectivamente, en el dibujo observamos como las bobinas se encuentran ancladas en el estartor, lo cual las convierte en una parte fija. Y el rotor polarizado es la parte móvil.


Las ventajas del uso de la corriente alterna.

Principalmente existen dos ventajas muy significativas y están relacionadas entre si. Una de ellas es su transporte o distribución, ya hemos tratado este tema en otras páginas. Aquí solamente diremos que su transporte o distribución en líneas trifásicas lo hacen más económico y seguro que si fuera corriente continua.
La otra ventaja es su transformación. La corriente alterna se puede transformar y variar con un transformador, en cambio la corriente continua no se puede transformar con un transformador. Es cierto que se puede reducir la corriente continua, pero no se puede aumentar.
Existe otra ventaja del uso de la corriente alterna. Las máquinas eléctricas como los motores están mejor diseñados para el uso de la corriente alterna que para la corriente continua. De hecho, los motores de corriente alterna son más sencillos de fabricar y más robustos que los motores de corriente continua.



La diferencia de la corriente alterna con la corriente continua, es que la corriente continua circula sólo en un sentido.
La corriente alterna (como su nombre lo indica) circula por durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante.
Este tipo de corriente es la que nos llega a nuestras casas y la usamos para alimentar la TV, el equipo de sonido, la lavadorala refrigeradora, etc.

                                       tension continua

MALLAS Y NODOS

Definiciones

Nodo: Punto de un circuito en el que se unen tres o más conductores. 
Rama: Parte del circuito unida por dos nodos.
Malla: Recorrido cerrado dentro de un circuito.

LEYES DE KIRCHHOFF

Ley de nodos

La suma algebraica de las corrientes en un nodo es igual a cero.

Ley de Nodos

I1 – I2 – I3 = 0


Ley de mallas

La suma de todas las caídas de tensión en un malla es igual a la suma de todas las tensiones aplicada

Ley de Mallas


VAB = V1 + V2 + V3





CIRCUITOS


CIRCUITOS RL            
Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene autoinductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la autoinductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.
Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.
Esta fem está dada por:  V = -L (inductancia) dI/dt
Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.
Según kirchhoff:                     V = (IR) + [L (dI /  dt)]
         IR = Caída de voltaje a través de la resistencia.
Esta es una ecuación diferencial y se puede hacer la sustitución:
               x = (V/R) – I           es decir;       dx = -dI
Sustituyendo en la ecuación:     x + [(L/R)(dx/dt)] = 0      dx/x = - (R/L) dt
Integrando:                                  ln (x/xo) = -(R/L) t
Despejando x:                               x = xo e –Rt / L
Debido a que                                     xo = V/R
El tiempo es cero , y corriente cero              V/R – I = V/R e –Rt / L
                                 I = (V/R) (1 - e –Rt / L)

El tiempo  del circuito está representado por  t = L/R
                                 I = (V/R) (1 – e – 1/t)
 Donde para un tiempo infinito, la corriente de la malla será  I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.
Para verificar la ecuación que implica a t y a I, se deriva una vez y se reemplaza en la inicial:                                  dI/dt = V/L e – 1/t
 Se sustituye:                             V = (IR) + [L (dI /  dt)] 
V = [ (V/R) (1 – e – 1/t)R + (L V/ L e – 1/t)]
 V – V e – 1/t = V – V e – 1/t
  
OSCILACIONES EN UN CIRCUITO LC
Cuando un condensador se conecta a un inductor, tanto la corriente como la carga den el condensador oscila. Cuando existe una resistencia, hay una disipación de energía en el sistema porque una cuanta se convierte en calor en la resistencia, por lo tanto las oscilaciones son amortiguadas. Por el momento, se ignorará la resistencia.
En un tiempo igual a cero, la carga en el condensador es máxima y la energía almacenada en el campo eléctrico entre las placas es U = Q2máx/(2C). Después de un tiempo igual a cero, la corriente en el circuito comienza a aumentar y parte de la energía en el condensador se transfiere al inductor. Cuando la carga almacenada en el condensador es cero, la corriente es máxima y toda la energía está almacenada en el campo eléctrico del inductor. Este proceso se repite de forma inversa y así comienza a oscilar.
En un tiempo determinado, la energía total del sistema es igual a la suma de las dos energías (inductor y condensador):  U = Uc + UL
 U = [ Q2/(2C) ] + ( LI2/2 )

En un circuito RL serie en corriente alterna, se tiene una resistencia y una bobina en serie. La corriente en ambos elementos es la misma.
Circuito RL serie en corriente alterna - Electrónica Unicrom
La tensión en la bobina está en fase con la corriente (corriente alterna) que pasa por ella (tienen sus valoresmáximos simultáneamente).
Pero el voltaje en la bobina está adelantado a la corriente que pasa por ella en 90º (la tensión tiene su valor máximo antes que la corriente)
Formas de onda en circuito RL serie - Electrónica Unicrom

CIRCUITOS RCL


En los circuitos RLC se acoplan resistencias, capacitores e inductores. Existe también un ángulo de desfasaje entre las tensiones y corrientes (y entre las potencias), que incluso puede llegar a hacerse cero. En caso de que las reactancias capacitivas e inductivas sean de distinto valor para determinada frecuencia, tendremos desfasajes.

Dependiendo de cual de las reactancias sea mayor podremos afirmar si se trata de un circuito con características capacitivas o inductivas y por lo tanto si la tensión adelanta a la corriente (y con qué ángulo) o si la corriente adelanta a la tensión.

A continuación detallamos los valores de un circuito RLC simple en serie.

                   CIRCUITO R-C
Un circuito RC es un circuito compuesto de resistores y condensadores alimentados por una fuente eléctrica. Un circuito RC de primer orden está compuesto de un resistor y un condensador y es la forma más simple de un circuito RC. Los circuitos RC pueden usarse para filtrar una señal, al bloquear ciertas frecuencias y dejar pasar otras. Los filtros RC más comunes son el filtro paso altofiltro paso bajofiltro paso banda, y el filtro elimina banda. Entre las características de los circuitos RC está la propiedad de ser sistemas lineales e invariantes en el tiempo; reciben el nombre de filtros debido a que son capaces de filtrar señales eléctricas de acuerdo a su frecuencia.
En la configuración de paso bajo el condensador está en serie a la señal de salida del circuito primero la resistencia, después el condensador; mientras que en la configuración de paso alto el condensador cambia lugar con la resistencia.

Este mismo circuito tiene además una utilidad de regulación de tensión, y en tal caso se encuentran configuraciones en paralelo de ambos, la resistencia y el condensador, o alternativamente, como limitador de subidas y bajas bruscas de tensión con una configuración de ambos componentes en serie. Un ejemplo de esto es el circuito Snubber.
                             
Los circuitos RC tienen una función inmediata de temporizadores, aprovechando su constante de tiempo con dimensiones de segundos. Pero, por otra parte, su uso fundamental es como filtros: bien paso alto, que corta las frecuencias bajas; bien paso bajo, que corta las frecuencias altas, lo cual depende de la posición de montaje del condensador.


Existe una frecuencia específica, la llamada frecuencia de corte, en la cual la reactancia capacitiva es igual a la resistencia. (También ocurre un desfase asociado de 45 grados, obvio al ver losfasores.)
R = X_c
Sustituyendo X_C = \frac{1} {2 \pi f C} encontramos que:
R = \frac{1} {2 \pi f C}
La frecuencia de corte, definida como la frecuencia a la que la potencia de la señal se atenúa al 30% (o 3.01 dB), es una función de los valores de resistencia y capacidad. Podemos operar en la fórmula anterior para resolver f de la siguiente forma:
f_{corte} = \frac{1}{2 \pi R C}                                      Circuito RLC


Reactancia capacitiva


ω = Velocidad angular = 2πf
C = Capacidad
Xc = Reactancia capacitiva


Reactancia inductiva



ω = Velocidad angular = 2πf
L = Inductancia
Xl = Impedancia inductiva

Impedancia total del circuito RLC serie



R = Resistencia
Xl = Reactancia inductiva
Xc = Reactancia capacitiva

Angulo de desfasaje entre tensión y corriente



Xl = Reactancia inductiva
Xc = Reactancia capacitiva
R = Resistencia


Corriente máxima
El módulo de la corriente máxima que circula por el circuito es igual al módulo de la tensión máxima sobre el módulo de la impedancia.

Corriente máxima